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Abstract

In this work, thermal dispersion coefficients, as they appear in the one-temperature model, are estimated for a

packed bed of glass spheres through which water is flowing with P�eclet numbers up to 130. Thermocouples in the

downstream neighborhood of a line heat source measure the temperature response to a step heat input. Due to

experimental uncertainties in fluid velocity and thermocouple positions, ordinary least squares estimation on the

thermocouple signal alone is of poor quality. Optimal experimental design and simultaneous estimation of velocities

and thermocouple positions by the Gauss–Markov method––using prior (but uncertain) information on the thermo-

couple locations––allow for highly improved estimation of the longitudinal thermal dispersion coefficient. The lateral

coefficient can only be roughly estimated by the presented method. Monte Carlo simulations of measurements allow

one to assess the level of estimation errors. Excellent temperature residuals in the whole range of P�eclet numbers suggest

that the assumption of the one-temperature model is reasonable even in the case of local thermal non-equilibrium.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transport in porous media through which a

fluid is flowing comprises convective and diffusive effects

and is generally referred to as thermal dispersion. Its

applications are numerous and range from classical ones

such as fixed bed reactors in chemical engineering or

underground storage of solar energy to modern ones

such as the use of metal foams for the cooling of elec-

tronic circuits. A better understanding of the pheno-

menon is essential to improve the efficiency of these

devices.
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For a long time, thermal dispersion models for the

average temperature were developed directly on the

macroscopic scale. Based on mass dispersion models for

transport in the fluid phase, they included the additional

effects of fluid-to-solid heat exchange and intra-particle

heat conduction. In a comprehensive review, Tsotsas [1]

examined the existing types of models for longitudinal

thermal dispersion: two-equation models describing the

temperature evolution for fluid and solid phase sepa-

rately––with either continuous or dispersed solid

phase––and one-equation models for the evolution of

only one average temperature for both phases. Using

momentum analysis, he set up equivalence criteria be-

tween these models and derived the velocity dependence

of the longitudinal thermal dispersion coefficient. Con-

cerning lateral thermal dispersion, Bauer and Schl€under
[2] have generalised a (macroscopic) mass transport

model which is widely used until today.
ed.
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Nomenclature

a thermal diffusivity [m2 s�1]

a, b estimates of parameter vectors a, b

cp heat capacity [JK�1 kg�1]

d particle diameter [m]

In identity matrix of dimension n
Pe P�eclet number ud=af
Q linear heating power [Wm�1]

S sum of squares

s volumetric heat source [Wm�3]

T, T (vector of) temperature [K]

hT i average temperature [K]

t time [s]

uD, u Darcy velocity [m s�1]

W plane heating power [Wm�2]

X sensitivity matrix

Y measurement signal vector

x, y, x, y, z (vectors of) space coordinates [m]

:¼ equality defining a quantity

Greek symbols

a, b parameter vectors

e porosity

� measurement error vector

g theoretical model vector

k thermal conductivity [Wm�1 K�1]

keq equivalent thermal conductivity [Wm�1 K�1]

kx, ky thermal dispersion coefficients [Wm�1 K�1]

k thermal dispersion tensor [Wm�1 K�1]

X weighting matrix for Gauss–Markov esti-

mation

q density [kgm�3]

r standard deviation

Subscripts and superscripts

f fluid phase

s solid phase

T transposed vector or matrix
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More rigorous theoretical modelling starts on the

microscopic scale and takes into account pore geometry

and the microscopic velocity field. On the pore scale,

heat transport is described by a convection–diffusion

equation for the fluid phase, a diffusion equation for the

solid matrix and continuity conditions for temperature

and heat flux at the phase boundary. This problem

cannot be solved exactly for macroscopic dimensions,

and up-scaling techniques such as volume-averaging [3]

or homogenization [4] need to be employed to obtain

models for averaged quantities.

Carbonell and Whitaker [3] derived a two-tempera-

ture model by means of volume-averaging. Unfortu-

nately, this most complete model contains numerous

coupling parameters; these have been calculated

numerically for spatially periodic porous media of sim-

ple geometry [5], but cannot be estimated experimentally

for more complex structures. In order to obtain a sim-

pler model, Carbonell and Whitaker analyzed the spatial

moments of the temperature response to a one-dimen-

sional Dirac pulse. They found that, for long times, both

fluid and solid temperature signals are separated by a

constant distance, which depends on geometry and

thermal properties of the system as well as on fluid

velocity, and that they move with the same average

velocity and are dispersed at the same rate. Conse-

quently, they obey the same convection–diffusion equa-

tion with one average velocity and one longitudinal

thermal dispersion coefficient.

Recently, Moyne et al. [6] obtained a one-tempera-

ture model for thermal dispersion by using indepen-

dently both volume-averaging and homogenization.
They could show that this model stays valid in the case

of local thermal non-equilibrium, i.e. for high fluid

velocities, if the average temperature is defined as the

calorimetric mean of solid and fluid average tempera-

tures. In the same context, Da Silveira [7] carried out

Monte Carlo simulations of heat transfer in two-

dimensional periodic porous media with randomly cre-

ated complex unit cells. By analysis of spatial moments,

he obtained values for the longitudinal and lateral

thermal dispersion coefficients of the one-temperature

model.

Only two experimental works of major impact shall

be mentioned here: Green et al. [8] estimated longitudi-

nal thermal dispersion coefficients for a packed bed by

imposing a temperature step at the inlet and measuring

the response at the outlet. Levec and Carbonell [9] used

the same method but largely extended the experimental

range; they additionally measured lateral thermal dis-

persion coefficients by dividing the inlet of the packed

bed into two regions, injecting hot and cold water in the

respective sections and observing steady-state lateral

mixing.

The aim of the present work is to estimate thermal

dispersion coefficients from minimally intrusive mea-

surements and to determine their velocity dependence.

Additionally, temperature residuals are used to assess

the assumption of the one-temperature model, espe-

cially for local thermal non-equilibrium. This occurs for

fluid velocities corresponding to high P�eclet numbers

since the P�eclet number represents the ratio of charac-

teristic times for diffusion and convection on the pore

scale.



Table 2

Reference velocities and corresponding parameter values

u (m s�1) 0.655· 10�3 6.55· 10�3

Pe 9.06 90.6

kx (Wm�1 K�1) 2.4 60

ky (Wm�1 K�1) 1 3

Q (Wm�1) 70 300
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2. One-temperature model for thermal dispersion

In this section, the one-temperature model as well as

its solutions for two different experimental situations are

presented. According to Moyne et al. [6] the average

temperature hT i of the porous medium needs to be de-

fined as the calorimetric mean of the average phase

temperatures hTfif and hTsis:

ðqcpÞthT i :¼ eðqcpÞfhTfi
f þ ð1� eÞðqcpÞshTsi

s ð1Þ

where e is the porosity of the medium and ðqcpÞt the

total volumetric heat capacity, calculated by the mixing

law

ðqcpÞt :¼ eðqcpÞf þ ð1� eÞðqcpÞs ð2Þ

Then the evolution of this average temperature is de-

scribed by the convection–diffusion equation

ðqcpÞt
ohT i
ot

¼ r 	 ðkrhT iÞ � ðqcpÞfuD 	 rhT i þ s ð3Þ

where uD denotes the Darcy velocity, which is the vol-

umetric fluid flow per total cross section, k is the thermal

dispersion tensor, which is a function of pore geometry,

thermal properties and fluid velocity, and s is a volu-

metric heat source.

If we suppose the porous medium to be homo-

geneous and isotropic, and if the average fluid flow is in

x-direction, i.e. uD ¼ ðu; 0; 0Þ, and the heat excitation s
non z-dependent, then Eq. (3) simplifies to

ðqcpÞt
oT
ot

¼ kx
o2T
ox2

�
þ ky

o2T
oy2

�
� ðqcpÞfu

oT
ox

þ s ð4Þ

where T has been used to represent hT i, kx is the longi-

tudinal and ky the lateral thermal dispersion coefficient.

2.1. Transient temperature response signals

For an infinite porous medium which is initially at

thermal equilibrium, i.e. at room temperature T0 every-

where, Eq. (4) can be solved for any heat source s by

successive use of an exponential transform and Green’s

function [10]. For a line source along the z-axis which is

switched on at t ¼ 0 and dissipates the constant linear

heating power Q, the temperature response DT :¼ T �
T0 is given by
Table 1

Physical characteristics of the porous medium (packed bed of glass s

Fluid phase S

ðqcpÞf (JK�1 m�3) 4.17· 106 ð
kf (Wm�1 K�1) 0.607 d

af (m2 s�1) 1.47· 10�7 e
DT ðx; y; tÞ ¼ Q

4p
ffiffiffiffiffiffiffiffiffi
kxky

p exp
ðqcpÞfux

2kx

� �



Z ðqcp Þ2

f
u2 t

4ðqcp Þtkx

0

exp

 
� x2

kx

�
þ y2

ky

�


 ðqcpÞ2f u2
16kx

1

h
� h

!
dh
h

ð5Þ

Table 1 gives the physical characteristics for a packed

bed of glass spheres, as used in our experiments; two

reference velocities and the corresponding values for the

thermal dispersion coefficients are shown in Table 2,

along with typical values for the linear heating power.

The temperature field is plotted for the small refer-

ence velocity in Fig. 1 at three different times; one can

clearly see that the heated zone is dispersed in the lateral

direction, but that it stays relatively confined. This

confinement effect increases with velocity. Fig. 2 gives

the transient temperature response for the high reference

velocity at three different positions on the x-axis. Close
to the heat source the temperature rise is steeper and the

steady-state level higher than farther downstream, due

to longitudinal and lateral dispersion respectively.

For a plane source in the y–z-plane, which dissipates

the constant plane heating power W for t > 0, the tem-

perature response is

DTplaneðx; tÞ ¼
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkxðqcpÞt
p exp

ðqcpÞfux
2kx

� �



Z ffi

t
p

0

exp

 
� ðqcpÞ2f u2h

2

4ðqcpÞtkx
� ðqcpÞtx2

4kxh
2

!
dh

ð6Þ

The steady-state signal follows directly from the energy

conservation law and is independent of the x-position

DTplane;1 ¼ W
uðqcpÞf

ð7Þ
pheres)

olid phase

qcpÞs (JK�1 m�3) 2.08· 106

(m) 2· 10�3

0.365
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Fig. 2. Transient temperature response for a line heat source

and Pe ¼ 90:6 at different axial positions (for parameters see

Tables 1 and 2).

Fig. 1. Temperature field for a line heat source and Pe ¼ 9:06 at

different times: (a) t ¼ 40 s, (b) t ¼ 80 s and (c) t ! 1 (for

parameters see Tables 1 and 2).
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Fig. 3. Relative sensitivities for a line heat source and Pe ¼ 90:6

at the axial position x ¼ 4 cm (cf. Fig. 2 for the corresponding

temperature signal).
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2.2. Sensitivities to thermal dispersion coefficients

In order to justify the estimation of thermal disper-

sion coefficients from transient thermocouple measure-

ments, relative sensitivities of the temperature signal are

shown in Fig. 3a for a line heat source. It can be seen

that the temperature signal is sensitive to both coeffi-

cients: the sensitivity to kx is low and transient (it almost
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vanishes for long times) whereas the sensitivity to ky is

higher and attains its maximum in steady state. In Fig.

3b, one sensitivity is plotted as a function of the other;

this shows that they are linearly independent (otherwise

the curve would be part of a line through origin) and

that consequently both coefficients can be estimated at

the same time.

Fig. 3a also gives the temperature signal’s sensitivities

to two ‘‘known’’ parameters, namely Darcy velocity and

x-position of the thermocouple. Both sensitivities are

high, meaning that small changes in these parameters

have a big effect on the (measured) temperature signal.

The sensitivity to the y-position of the thermocouple

vanishes on the x-axis due to the symmetry of the tem-

perature field.
3. Experimental set-up

3.1. Porous medium

The experiments are carried out in a packed bed of

glass beads (with diameter d ¼ 2 mm) through which

water is flowing from top to bottom. In the central re-

gion of this porous medium, heating wires are installed

perpendicular to water flow; Fig. 4 shows the two dif-

ferent installations used. Thirteen thermocouples are set

in the porous medium, with their measurement junctions

in the central x–y-plane and their two ends leaving in

opposite z-directions.
Most thermocouples (1–7) are located on––or close

to––the downstream x-axis, where the temperature sig-

nal and its sensitivities to the thermal dispersion coeffi-

cients are highest. Some (8–11) are set well off the x-axis
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Fig. 4. Dimensions of the porous medium and positions of thermoco

(b) off-axis measurements (with heating element D) as well as experim
in order to check that the heated zone stays confined and

that wall effects may be neglected (cf. assumption of

infinite geometry). Two thermocouples (12 and 13) are

used to monitor the temperature of the incoming water

T0 and to assess the effect of natural convection for very

small P�eclet numbers. (Only for Pe6 1, thermocouple 12

measures a temperature rise. But velocity estimation, as

described later, seems to show that natural convection

lowers local water velocity for P�eclet numbers up to 10.)

It has to be mentioned that the thermocouple wires,

which are set in the empty box, are randomly displaced

when the glass beads are filled in––typically by the

diameter of a sphere––so that the exact measurement

positions are not known. The packed bed is generated by

successively filling in and compacting the beads; its

overall porosity is 36.5%. The thermal properties of both

phases are given in Table 1.

3.2. Linear and plane heat source

In a first series of measurements (see Fig. 4a), a single

high-resistance wire (260 lm in diameter) was used as an

electrical line heat source. Rough calculations for a wire

in free flow showed that, within the experimental range

of design parameters, boiling on the wire surface did not

occur and characteristic response times were negligible.

Later, mantled heating elements (of 1 mm outer dia-

meter) were used to overcome electrical insulation

problems (see Fig. 4b); however, for high P�eclet numbers

their response time might introduce an error in the

estimation results [10].

The plane heat source is implemented by several

equidistant heating elements that can produce the same

temperature response in a centre region neither too close
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Fig. 5. Stationary temperature field DT1 for seven heating

elements as in Fig. 4b at Pe ¼ 9:06 and for three axial distances.

(For comparison, the temperature for the corresponding plane

heat source is given.)
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nor too far away from the source. This is shown for the

small reference velocity and steady state in Fig. 5. In the

experiments, the numbers of heating elements and

thermocouples were chosen according to water velocity

to fulfill this criterion.

Heating power is measured electrically and moni-

tored during all experiments; its value is chosen to have

temperature signals of about 1 K and constant physical

properties throughout the measurement region.

3.3. Temperature measurement

Temperature is measured by thermocouples of type

E, made from wires of 127 lm diameter; their thermal

response time was found to be 15 ms. The thermoelec-

trical voltage (between a thermally insulated reference

junction and the measurement junction) is amplified

2000 times and measured at a frequency of 2 KHz;

electrical noise is reduced by a first-order low pass filter

of 44 Hz and by averaging data groups of 80 points

(corresponding to 2 periods of 50 Hz noise). Thus,

temperature can be recorded at an effective frequency of

8 Hz with a noise of about 0.01 K. Additionally, any

offset of the data acquisition system or the thermocou-

ples is corrected by the signals measured at t < 0.

3.4. Water flow

Water at ambient temperature is pumped from one

big reservoir (200 l) through the packed bed into a

separate reservoir which is floating in the first one. This

is to keep the inlet temperature T0 strictly constant and

to allow the pump to operate at a constant pressure

difference. The flow rate can be adjusted by valves and is

monitored during the experiments. Darcy velocity is
calculated by referring the flow rate to the total cross-

section; due to channeling effects at the walls of the box

this does not give the correct Darcy velocity at the centre

of the packed bed but a value which is approximately

4% too high [11].
4. Estimation of dispersion coefficients

4.1. Ordinary least squares

Thermal dispersion coefficients will be estimated

from temperature response measurements. These tem-

peratures, taken at n positions ðxi; yiÞ and m times tk , are
set into a column vector Texp. The underlying theoretical

model depends on the unknown parameters ðkx; ky ; . . .Þ,
set into vector b, and yields the corresponding theoret-

ical vector TðbÞ. In the ideal case where the model is

true, experimental data differ from the theoretical curves

only by additive measurement noise �. Parameters can

then be estimated by minimizing the sum of squares

SðbÞ ¼ ðTexp � TðbÞÞTðTexp � TðbÞÞ ð8Þ

using the Gauss iteration algorithm

bkþ1 ¼ bk þ ðXTðbkÞXðbkÞÞ�1
XTðbkÞðTexp � TðbkÞÞ ð9Þ

Here X ¼ oT
ob

denotes the sensitivity matrix the columns

of which are partial derivatives of the theoretical tem-

perature. In this way, a parameter estimate bb is obtained

which contains a stochastic error due to measurement

noise and additionally may be biased; in the case of

normal measurement noise we have

covðbbÞ � ðXTðbbÞXðbbÞÞ�1
covð�Þ ð10Þ

We are using here the notation and results of Beck [12].

As pointed out in the previous section, neither water

velocity nor thermocouple positions are precisely

known; to avoid erroneous estimation of the thermal

dispersion coefficients, these parameters should be esti-

mated simultaneously. In (classical) least squares esti-

mation from axial measurements (yi ¼ 0), only the

following three estimation modes are possible, otherwise

the parameters become correlated:

b1 ¼ ½ kx ky �T ð11Þ

b2 ¼ ½ kx ky u �T ð12Þ

b3 ¼ ½ kx ky xT �T ð13Þ

Here x is a column vector containing all x-positions.

4.2. Gauss–Markov estimation

If velocity and positions are to be estimated at the

same time
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a4 ¼ ½ kx ky u xT �T ð14Þ

we need to use prior information on the thermocouple

locations. Their nominal positions xnomi (before the glass

beads are filled in the box) can be taken as a comple-

mentary measurement signal, and a new signal vector Y

as well as its theoretical counterpart g can be defined

Y ¼ Texp

xnom

	 

; gða4Þ ¼

Tða4Þ
x

	 

ð15Þ

The sum of squares is extended to comprise tempera-

tures and positionseSða4Þ ¼ ðY� gða4ÞÞTX�1ðY� gða4ÞÞ ð16Þ

and contains the weighting matrix

X ¼ r2
TIn	m 0

0 r2
posIn

	 

ð17Þ

where rT is the standard deviation of temperature

measurement noise and rpos the standard deviation of

(normal) thermocouple wire displacement. eS can also be

alternatively written as the classical least square sum S
that has been associated with a penalization term based

on locations, with weighting factors that are the square

of standard deviations of temperatures and locations:

eSða4Þ ¼
1

r2
T

Sða4Þ þ
1

r2
pos

ðxnom � xÞTðxnom � xÞ ð18Þ

Minimization of this new sum of squares corresponds to

Gauss–Markov estimation [12] and is achieved by the

algorithm

akþ1 ¼ ak þ ðeXTðakÞX�1 eXðakÞÞ�1 eXTðakÞX�1ðY� gðakÞÞ
ð19Þ

which generalizes Eq. (9) and employs the sensitivity

matrix eX ¼ og

oa4
. The estimation error can be given as

covðba4Þ � ðeXTðba4ÞX�1 eXðba4ÞÞ�1 ð20Þ
Table 3

Estimation results for Monte Carlo simulations for axial measurement

mms�1) and with stochastic errors added to the nominal x-positions

b1 b2bkx (Wm�1 K�1) 68.50± 2.16 60.85± 1.54bky (Wm�1 K�1) 2.903± 0.067 2.999± 0.081

û (mm s�1) – 6.293± 0.056

x̂2 � x2 (mm) – –

x̂3 � x3 (mm) – –

x̂4 � x4 (mm) – –

x̂5 � x5 (mm) – –

x̂6 � x6 (mm) – –

x̂7 � x7 (mm) – –

The exact dispersion coefficient values are kx ¼ 60 Wm�1 K�1 and ky
The value of rpos is not exactly known, but estimation

results are independant of its choice for a wide range

[13].

Thermocouple positions can be estimated in two

dimensions if they are placed slightly off-axis (ynomi ¼ 2:5
mm) to have a non-zero sensitivity to the y-position and

still a big enough temperature signal. The extension of

the parameter vector and its estimation is straightfor-

ward:

a5 ¼ ½ kx ky u xT yT �T ð21Þ
5. Monte Carlo simulation of experiments

In order to assess estimation errors, experiments with

thermocouples 2–7 were simulated by the Monte Carlo

method [12]. Here, we only discuss our results for the

high reference velocity [10]. The error on measurement

locations was simulated by adding random normal noise

of standard deviation rpos to the nominal positions; this

means that the nominal (imposed) positions differ from

the exact positions by a ‘‘noise’’ of standard deviation

rpos. The exact water velocity was taken 4% below its

nominal value. Then, theoretical temperatures were

calculated at times tk ¼ 0:15; 0:3; 0:45; . . . ; 45 s, and

random normal noise of standard deviation rT ¼ 0:02 K

was added. From these simulated experimental data,

parameters were estimated by the different modes, using

nominal values for ‘‘measured’’ velocity and positions.

To obtain significant results, 400 such measurements

were simulated (with new thermocouple locations in

each simulation); finally, for every estimated parameter

its mean value and the statistical standard deviation

were calculated.

Table 3 shows a comparison of the ordinary least

squares modes bi with Gauss–Markov estimation a4;

thermocouples are located on the x-axis and no noise is

added in y-direction. (The estimated positions are given

relative to the exact positions.) One can clearly see, that
s (yi ¼ 0), with unknown velocity (whose exact value is u ¼ 6:288

(rpos ¼ 2 mm)

b3 a4

65.07± 0.74 60.02± 1.14

2.765± 0.005 2.999± 0.050

– 6.290± 0.052

1.67± 0.12 0.01± 0.35

2.48± 0.14 0.00± 0.51

3.33± 0.17 0.02± 0.66

4.16± 0.19 0.02± 0.83

4.94± 0.21 )0.02± 1.04

5.82± 0.26 0.03± 1.16

¼ 3 Wm�1 K�1.
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mode a4 outperforms the classical modes by yielding

small estimation errors and no significant bias for all

estimated parameters.

However, in real experiments, thermocouple posi-

tions are inaccurate in two dimensions. Monte Carlo

simulations reveal that this can lead to large estimation

errors in mode a4 where the error on y-positions is not
compensated. Fig. 6 shows the results in direct com-

parison with those of mode a5 in off-axis geometry (cf.

Fig. 4b). Concerning the estimation of the longitudinal

dispersion coefficient kx, Darcy velocity u and x-posi-
tions, mode a5 clearly gives the better results. In con-

trast, estimation of the lateral dispersion coefficient ky ,
(a)

(c)

(d)

Fig. 6. Histograms for Monte Carlo simulations comparing axial m

measurements (ynomi ¼ 2:5 mm) and estimation mode a5 (in both case
for which mode a4 systematically yields too big values, is

of even poorer quality in mode a5: the estimated values

are now too small and widely dispersed. Furthermore,

y-values are overestimated in mode a5, which can be

explained by a strong correlation of ky and yi [10].
6. Experimental results for three different geometries

6.1. Axial measurements with line heat source

Typical experimental temperatures for (axial) ther-

mocouples are plotted in Fig. 7a. All data points were
(b)

easurements (ynomi ¼ 0) and estimation mode a4 with off-axis

s, rpos ¼ 1 mm in two dimensions).



(b)

(a)

Fig. 7. Transient temperature response at low reference water

velocity for axially-positioned thermocouples 2–7 (a) and

magnified residuals for mode a4 (b).

(a)

(b)

(c)

Fig. 8. Estimated thermal dispersion coefficients and Darcy

velocity for different measurement geometries and estimation

modes.
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used to estimate the parameter vector a4: the recalcu-

lated temperatures are given as slashed lines. The

residuals (Fig. 7b) are correlated due to uncompensated

error on yi.
Estimation results for thermal dispersion coeffi-

cients, water velocity and x-positions are shown in Figs.

8 and 9. The velocity dependence of kx and ky will be

discussed later. Concerning water velocity, we find the

estimated value (based on data from the center of

the packed bed) to be a few percent smaller than the

measured value (average over cross section), which can

be explained by channeling effects. For small P�eclet
numbers, this difference increases, probably due to

natural convection which slows down water flow in

the neighborhood of the heating wire. The estimated

x-positions depend strongly on water velocity in this

experimental situation where the thermocouple loca-

tions are unknown but velocity independent; the reason

for this effect is again the uncompensated error on

y-positions [10].
6.2. Off-axis measurements with line heat source

Fig. 10 represents experimental temperature data

from thermocouples that are set off-axis (ynomi ¼ 2:5 mm)

for the high reference velocity. (In this geometry,
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stationary temperature levels may be interchanged.)

Parameters are estimated in mode a5 yielding excellent

residuals with no observable correlation.
Thermal dispersion estimation results are shown in

Fig. 8; for the longitudinal coefficient kx both estimation

modes a4 and a5 yield similar values whereas the results

for ky differ very much. This is in perfect accordance

with our Monte Carlo simulations which showed that ky

is overestimated in axial mode a4 and underestimated in

off-axis mode a5. As to the longitudinal dispersion

coefficient kx, they suggest the results of mode a5 to be

highly reliable, so that we correlated them using a power

law [10]. Here keq � 0:86 Wm�1 K�1 is the equivalent

thermal conductivity of the packed bed with no flow.

Concerning the lateral dispersion coefficient ky , we

only give upper and lower limits, and also display esti-

mation results of mode b2 using only data from ther-

mocouple 7 for which errors on the position are less

important. Regarding to water velocity, mode a5 in the

whole confirms the results of axial estimation mode a4

(See Fig. 8c where the ratio of the estimated––through

thermocouple measurements––over measured––by

flowmeter––velocities is plotted as a function of the

measured P�eclet number constructed with this last

velocity).

Estimated thermocouple positions are plotted in

Fig. 11 for all off-axis experiments along with the

nominal positions; a representative glass bead (circle)

illustrates the dimensions. Apart from the two exper-

iments at Pe < 3 with significant natural convection

(empty circles, see arrows pointing at filled circles in

Fig. 8c) the results display only a weak velocity

dependence, greatly reduced in comparison with axial

mode a4. These results also show that no visible bias

appears since the estimated locations seem to be

evenly scattered in all directions around their nominal

locations.
6.3. Measurements with plane heat source

In plane heating, only the longitudinal dispersion

coefficient can be estimated (one-dimensional geometry).

Unfortunately, plane heating power W is not precisely

known because the distance between the heating ele-

ments could not be perfectly controlled. There are two

ordinary least squares estimation modes [10]:

bI ¼ ½ kx u xT �T ð22Þ

bII ¼ ½ kx u W �T ð23Þ
Not all four parameters (kx, u, xi and W ) can be esti-

mated simultaneously because they are perfectly corre-

lated. Thus, estimation is always based on imprecise

information and cannot be expected to be of high

quality. Fig. 12 shows estimation results for the two

modes which on the whole confirm our correlation ob-

tained from off-axis estimation.
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7. Discussion

In Fig. 13 our results for the longitudinal thermal

dispersion coefficient kx are compared to experimental

data from Green [8] as well as from Levec and Carbonell

[9], to numerical results of Da Silveira [7] and to the

model of Tsotsas [1]; to this purpose the power law

correlation is plotted for an extended range of P�eclet
numbers. We find our results validated by Green who

used exactly the same solid-fluid system. The data of

Levec and Carbonell are different in absolute values––

probably due to their different values of e and ðqcpÞs––
but display the same logarithmic slope as our results.

This holds also for Da Silveira’s numerical findings,

obtained for a two-dimensional system with fluid and

solid phase having identical thermal properties. The

model of Tsotsas has a slightly different logarithmic

behaviour but predicts very well our results for Pe > 70.
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Our results for the lateral thermal dispersion coeffi-

cient ky , obtained from three different estimation modes,

are plotted in Fig. 14 together with the model of Bauer

and Schl€under [2] and the results of Levec and Carbonell

[9]. Despite the problem of estimation errors, our values

are confirmed by the experimental data of Levec and

Carbonell who used a completely different experimental

set-up. Their theoretical model is based on mass dis-

persion and can describe neither their experiments nor

our results. The model of Bauer and Schl€under gives

much higher values than ours––probably due to their

assumption of perfect mixing in the pores.
8. Conclusion

A minimally intrusive experimental technique for

thermal dispersion characterization in packed beds has
been presented. The small temperature signal (DT � 1

K) is produced by a heating wire and measured by

thermocouples, both in the central region of the packed

bed to avoid wall effects. By a special choice of mea-

surement locations (off-axis) and Gauss–Markov type

parameter estimation (mode a5), experimental difficulties

linked to uncertainties on thermocouple exact positions

and on Darcy velocity have been successfully overcome.

Monte Carlo simulations show that our results for the

longitudinal thermal dispersion coefficient kx are of high

quality; the lateral coefficient ky can be estimated

simultaneously but with lower accuracy.

Our results for kxðPeÞ correspond to a power law with

an exponent of approximately 1.6 and are in good

agreement with literature data. Concerning ky , we obtain

significantly lower values than those predicted by the

widely-used model of Bauer and Schl€under [2]; however,
the linear dependence with the P�eclet number seems to

be confirmed.

Excellent temperature residuals up to high P�eclet
numbers (see Fig. 10) suggest that the one-temperature

model may also be used in the case of local thermal non-

equilibrium. Great attention was paid to the experi-

mental estimation of a high number of parameters

(dispersion coefficients, a velocity and six thermocouple

positions): their estimated values do not only serve in a

mathematical curve fitting exercise but also have to yield

physically reasonable and intrinsic values. Three differ-

ent experimental geometries could confirm the results

for kx.

The fact that the measured temperature is probably

closer to the fluid temperature hTfif than to that of

the one-temperature model hT i poses no problem: the

analysis of Carbonell and Whitaker [3] shows that the

longitudinal dispersion coefficient is equal for both

phases.

This work is currently continued to apply the pre-

sented technique to gas flow through porous media;

thus, the one-temperature model can be tested for two

phases with very different thermal properties. First re-

sults for a packed bed of glass beads are very promising,

they will be published in due time. Future work will

implement more precise experimental estimation of the

lateral dispersion coefficient to validate the above re-

sults.
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